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Abstract

Vegetation water content is an important parameter for retrieval of soil moisture from microwave data and for other remote sensing
applications. Because liquid water absorbs in the shortwave infrared, the normalized difference infrared index (NDII), calculated from Landsat 5
Thematic Mapper band 4 (0.76–0.90 μm wavelength) and band 5 (1.55–1.65 μm wavelength), can be used to determine canopy equivalent water
thickness (EWT), which is defined as the water volume per leaf area times the leaf area index (LAI). Alternatively, average canopy EWT can be
determined using a landcover classification, because different vegetation types have different average LAI at the peak of the growing season. The
primary contribution of this study for the Soil Moisture Experiment 2004 was to sample vegetation for the Arizona and Sonora study areas.
Vegetation was sampled to achieve a range of canopy EWT; LAI was measured using a plant canopy analyzer and digital hemispherical (fisheye)
photographs. NDII was linearly related to measured canopy EWT with an R2 of 0.601. Landcover of the Arizona, USA, and Sonora, Mexico,
study areas were classified with an overall accuracy of 70% using a rule-based decision tree using three dates of Landsat 5 Thematic Mapper
imagery and digital elevation data. There was a large range of NDII per landcover class at the peak of the growing season, indicating that canopy
EWT should be estimated directly using NDII or other shortwave-infrared vegetation indices. However, landcover classifications will still be
necessary to obtain total vegetation water content from canopy EWT and other data, because considerable liquid water is contained in the non-
foliar components of vegetation.
Published by Elsevier Inc.
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1. Introduction

As part of the North American Monsoon Experiment, the
Soil Moisture Experiment 2004 (SMEX04) was conducted in
Arizona, USA, and Sonora, Mexico, to test soil moisture ret-
rievals as a function of topography (Cosh et al., 2008-this issue;
Jackson, 2004; Vivoni et al., 2008-this issue). One of the
parameters for retrieval of soil moisture from active and passive
microwave remote sensing is the vegetation water content
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(Jackson et al., 2004), which is the total mass of liquid water in
stems and foliage per ground area (kg m−2). If vegetation water
content can be estimated independently from other satellite data,
then the retrievals of soil moisture would be more accurate.
Furthermore, vegetation water content may be useful in
detecting wildfire potential (Chuvieco et al., 2002; Dennison
et al., 2005; Maki et al., 2004; Zarco-Tejada et al., 2003).

Liquid water strongly absorbs incident solar radiation in the
short-wave infrared wavelength region (Palmer & Williams,
1974; Tucker, 1980), thus reflectance spectra of leaves and
canopies may be used to estimate the volume of liquid water per
leaf area or ground area, respectively, which is termed the
equivalent water thickness (EWT, mm). Many satellite sensors
have bands in the shortwave infrared wavelength region such as
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Landsat 5 Thematic Mapper and the MODerate resolution
Imaging Spectrometer (MODIS). Thus, determination of cano-
py EWT is a step towards the remote sensing of total vegetation
water content.

There have been many studies relating EWT and shortwave
infrared reflectances at the leaf level (Baret & Fourty, 1997;
Danson et al., 1992; Datt, 1999; Hunt & Rock, 1989; Sims &
Gamon, 2003; Stimson et al., 2005; and others), but fewer at the
canopy level with airborne or satellite sensors (Ceccato et al.,
2002; Chen et al., 2005; Davidson et al., 2006; Hunt, 1991;
Jackson et al., 2004; Zarco-Tejada et al., 2003). Much of the
effort has been to develop and test multispectral indices for
estimation of EWT or vegetation water content (Ceccato et al.,
2002; Fensholt & Sandholt, 2003; Gao, 1996; Hardisky et al.,
1983; Hunt & Rock, 1989; Peñuelas et al., 1997; Tucker, 1980).

Leaf area index (LAI) is a major variable affecting canopy
EWT (Anderson et al., 2004; Hunt, 1991; Roberts et al., 1998,
2004) so vegetation types with higher LAI (e.g. forests) will
have higher canopy EWT than areas with lower LAI (e.g.
shrublands). Maximum LAI is determined by vegetation type
(Woodward, 1987), and generally vegetation types with a higher
maximum LAI will also have higher average LAI. For many
purposes such as ecosystem modeling, parameter averages can
be selected for each vegetation type and a landcover classi-
fication is used to distribute the parameter averages regionally
or globally (Muchoney & Strahler, 2002; Running et al., 1995).
To determine total vegetation water content including water in
stems, landcover information will be necessary. It is therefore
reasonable to ask if average values for canopy EWT can be
assigned by vegetation type, so estimating canopy EWT from
multispectral indices would not be necessary when the vegeta-
tion is at peak LAI for the growing season.

We hypothesize that remote sensing of canopy EWT from
multispectral indices provides more information than vegetation
type from a landcover classification. Landsat 5 ThematicMapper
(TM) imagery were acquired for several dates during SMEX04
and the TM sensor has an important shortwave infrared band (TM
band 5, 1.55–1.75 μm wavelength). We sampled LAI and leaf
EWT for plots of different vegetation types during SMEX04, and
used these data to compare canopy EWT from multispectral
indices and vegetation type.

2. Field methods

2.1. SMEX04 study areas

There were two study areas selected for SMEX04, one in
Arizona, USA, and one in Sonora, Mexico (Jackson, 2004). The
Arizona study area (50 km by 75 km; between 31° 25′ N and
32° 7′ N, and 109° 43′ Wand 110° 14′ W) was centered about
the Walnut Gulch Experimental Watershed surrounding Tomb-
stone, Arizona. The study area includes the San Pedro River and
ranges in elevation from 1093 m to 2285 m, with an average
elevation of 1389 m. Mean annual temperature at Tombstone,
Arizona (1380 m elevation) is 17.7 °C and the mean annual
precipitation is 350 mm, which about 67% falls during the
summer monsoon.
The Sonora study area (50 km by 90 km; between 29° 41′ N
and 30° 30′ N, and 110° 14′ Wand 110° 46′ W) is centered on
the mountain highlands between the Sonora River and the San
Miguel River. The elevations range from 525 m to 2230 m, with
an average elevation of 1033 m. Mean annual temperature at
Opodepe, Sonora (690 m elevation) is 20.8 °C and the mean
annual precipitation is 477 mm, which about 67% falls during
the summer monsoon.

2.2. SMEX04 site selection and measurement

The main objectives of SMEX04 were to intensively sample
soil moisture over the Walnut Gulch Experimental Watershed
and regionally sample soil moisture over the Arizona and Sonora
study areas (Jackson, 2004). Because there were fewer people
sampling the vegetation, we could not achieve the same tem-
poral or spatial coverage as occurred for sampling soil moisture.
Hence, the objectives for SMEX04 were to sample the range of
plant communities present, and to use sensors, such as Landsat 5
TM and MODIS to extrapolate vegetation water content spa-
tially and temporally. The sampling protocols evolved over
SMEX04; the key measurements for each site included ground
cover, LAI, and leaf EWT.

Plot locations and vegetation types were established for the
Arizona study area in June and July, 2004 before the start of the
SMEX04 experiment. Because the goal was to sample a range
of vegetation types, most of the plots were not co-located with
soil moisture sites (Cosh et al., 2008-this issue). The first four
vegetation plots selected were the four eddy flux sites (Table 1).
Many vegetation plots were located in the riparian corridors of
the San Pedro River and its tributaries, at higher elevations, or in
irrigated agricultural fields, where LAI was expected to be
higher than the desert shrubland or grassland communities.
Initially, at least two locations were selected for each vegetation
type; however, riparian woodland and riparian mesquite com-
munities were only measured once.

Plot locations in Sonora were co-located with the SMEX04
soil moisture sites, along roads in the mountains, in the northern
and southern portions of the Sonora study area (Table 1). Six of
the plots were co-located along an elevational transect (Vivoni
et al., 2008-this issue).

At each location, square plots were established with 40-m
sides. The corners of the plots were geolocated with either a
Garmin (Olathe, Kansas, U.S.A.) eTrex Legend global posi-
tioning system enabled with the wide-area augmentation system
(4–8 m accuracy) or a Trimble (Sunnyvale, California, U.S.A)
Pro XRS global positioning system (3–5 m accuracy). Starting
5 m from one edge, a series of 7 transects 5 m apart were
positioned. LAI and cover were measured along these transects.

Cover was measured using the line-intercept technique
(Mueller-Dombois & Ellenberg, 1974). The cover category was
determined at the point of the foot at every 1 to 1.5 m (2 steps)
along each transect; categories were: live vegetation (green)
either by species (when identified) or vegetation type, litter
(stem or leaf), and bare (soil or rock). Percent cover was deter-
mined from the total in each category divided by the total
number of points sampled in the plot.



Table 1
Vegetation plot classification, date sampled, elevation, location, and cover fractions during SMEX04

Site name (class) Date Elevation
(m)

Coordinates (°) Cover (fraction)

Lat N Lon W Green Litter Bare

AZ Maize (agriculture) 29Jul 1301 31.9772 109.8582 1.00 0.00 0.00
AZ Chili (agriculture) 29Jul 1304 31.9718 109.8582 0.73 0.00 0.27
AZ Lewis Springs (sacaton) a 29Jul 1233 31.5606 110.1398 – – –
AZ Lucky Hills (shrub) a 30Jul 1366 31.7434 110.0523 0.53 0.00 0.47
AZ Kendell (grass) a 30Jul 1533 31.7371 109.9419 0.57 0.02 0.40
AZ Lewis Springs (rip. mesquite) a 30Jul 1236 31.5651 110.1361 0.80 0.08 0.11
AZ RG13 (shrub) b 31Jul 1328 31.7246 110.0909 0.53 0.00 0.47
AZ Kendell (whitethorn shrub) 31Jul 1504 31.7376 109.9558 0.69 0.11 0.20
AZ Stronghold (grass) 2Aug 1540 31.8547 110.0085 0.56 0.24 0.20
AZ Stronghold South (oak) 2Aug 1533 31.7369 109.9418 0.75 0.24 0.00
AZ Stronghold North (oak) 2Aug 1514 31.8635 110.0165 0.80 0.17 0.03
AZ San Pedro (rabbitbrush shrub) 3Aug 1237 31.5372 110.1336 0.52 0.22 0.26
AZ San Pedro (riparian wood) 3Aug 1235 31.5379 110.1335 0.98 0.00 0.02
AZ San Pedro (sacaton) 3Aug 1231 31.5565 110.1427 – – –
AZ RG57 (beargrass shrub) b 7Aug 1463 31.7283 109.9859 0.49 0.05 0.46
SO 135 (mesquiteshrub) b 6Aug 1064 30.2550 110.5149 0.64 0.17 0.20
SO 134 (oak) b 6Aug 1216 30.2199 110.4616 0.56 0.09 0.35
SO TID1 (oak) c 6Aug 1279 29.9728 110.4695 0.66 0.19 0.16
SO TID2 (oak) c 6Aug 1279 29.9709 110.4707 0.86 0.04 0.10
SO TID4 (oak) c 7Aug 1258 29.9684 110.4722 0.74 0.17 0.09
SO TID5 (oak) c 7Aug 1147 29.9716 110.4776 0.81 0.00 0.19
SO 136 (shrub) b 7Aug 988 30.3127 110.6736 0.72 0.03 0.25
SO 143 (mesquiteshrub) b 7Aug 971 30.3416 110.5561 0.61 0.09 0.30
SO TID7 (subtropical) c 8Aug 900 29.9639 110.5183 0.24 0.00 0.76
SO TID13 (subtropical) c 8Aug 900 29.9623 110.5209 0.70 0.00 0.30
a Flux site.
b SMEX04 raingauge and soil moisture sampling site.
c TID, Elevational Transect ID Number.
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2.3. Leaf area index

LAI (m2 leaf area per m2 ground area) was estimated during
the SMEX04 field campaign using two different methods: the
LI-COR, Inc. (Lincoln, Nebraska, USA) LAI-2000 Plant Cano-
py Analyzer, and digital hemispherical (fisheye) photographs.
The LAI-2000 was used for low-statured vegetation (shrublands
and grasslands) in the Arizona study area, whereas hemispher-
ical photographs were obtained for almost all plots. The he-
mispherical photographs and LAI-2000 measurements were
generally obtained every 5 m along each of the seven plot
transects, starting 5 m from the plot edge. When possible, the
LAI measurements with both techniques were obtained under
diffuse skylight conditions (Wells & Norman, 1991). However,
for some plots (occurring mostly in the Sonora study area), LAI
could only be measured under direct sunlight; for these plots,
LAI was increased 10% (John Norman, personal communica-
tion; Anderson et al., 2004).

For the LAI-2000, at each transect location, a single LAI
value was obtained from an above-canopy reading, followed by
4 sub-canopy readings, where each of the four readings were
shifted about 0.5 m in a diamond-shaped pattern. The lens of the
LAI-2000 was partially covered to allow a 270° field of view in
front of the user.

The hemispherical photographs were acquired using a Nikon
Coolpix 5400 digital camera with an 8-mm focal-length lens. A
tripod, compass and bubble level were used to mount the camera
horizontally about 25 mm off the ground, with the top of the
camera always facing north. The resulting digital photographs
were analyzed with HemiView Canopy Analysis Software,
Version 2.1 SR1 (Delta-T Devices, Ltd., Cambridge, U.K.).

After analyzing the LAI-2000 and hemispherical photo-
graphs for the same plots in the Arizona study area, it was found
that LAI from the hemispherical photographs were significantly
less than LAI from the LAI-2000. A possible reason for this
discrepancy is that we used the automatic exposure time for the
digital camera (Zhang et al., 2005). Therefore, we obtained
more concurrent measurements of LAI with both the LAI-2000
and hemispherical photographs at 71 sites (pastures, meadows
and woodlands) at the Beltsville Agricultural Research Center,
Beltsville, Maryland, USA. For woodland sites, two LAI-2000
were used, one for the clear sky reading and one for underneath
the canopy. A strong correlation was found (r2 =0 .94) between
the two methods (Fig. 1). The regression equation was used to
adjust the LAI calculated from the hemispherical photographs
to the expected value from the LAI-2000 for all plots during
SMEX04. The mean of all measurements (with both techniques
when LAI-2000 data were acquired) were used for the plot
average LAI.

2.4. Leaf and canopy EWT

At most plots, several leaf samples of the dominant vege-
tation were clipped, sealed in small plastic bags, and placed into
a cool, dark container to avoid water loss as much as possible.
Upon return to an air-conditioned room, a sub-sample of the



Fig. 1. Calibration of Leaf Area Index (LAI, m2 m−2) from digital hemispherical
(fisheye) photographs with the LICOR LAI-2000 Plant Canopy Analyzer. LAI
of 71 plots at 5 sites at the USDA Beltsville Agricultural Research Center were
measured to extend the range for the calibration equation. The equation is
y=1.9175x−0.2121, with an R2 of 0.935.
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leaves were removed, weighed, and photographed with a 4-
megapixel digital camera. In each photograph, reference squares
of 12.7 mm by 12.7 mm, 25.4 mm by 25.4 mm, and 63.5 mm by
63.5 mm, were placed in the photographs for scale. The digital
photographs were classified for green vegetation using mini-
mum distance supervised classification. Leaf area was then
calculated by counting the number of green pixels and mul-
tiplying by the scale determined from the reference squares. Leaf
samples were weighed at 60 °C in a drying oven to obtain dry
weight. Leaf EWT (EWTleaf) was calculated:

EWTleaf ¼ ðFWT� DWTÞ=Aleaf ð1Þ
where FWT is the sample fresh weight (kg), DWT is the sample
dry weight (kg), and Aleaf is the sample leaf area (m2). Dividing
Fig. 2. Landsat 5 Thematic Mapper (TM) images acquired on (A) June 11, (B) July 29
Images are displayed as color composites of atmospherically-corrected reflectances w
the top of the figure. The boxes represent the 75-km-by-50-km Arizona, USA study
EWTleaf by the density of water (1000 kg m−3), the units of
EWTleaf are converted from kg m−2 to meters. Canopy EWT
(EWTcanopy) was defined:

EWTcanopy ¼ EWTleaf d LAI ð2Þ

which is the depth of foliar liquid water per unit area of ground
(Hunt, 1991).

3. Landsat 5 Thematic Mapper

3.1. Acquisition and georeferencing

As part of SMEX04, Landsat 5 TM scenes (level 1G) were
acquired on three dates (11 June 2004, 29 July 2004, and 30
August 2004), one for the Arizona study area (Path 35/Row 38)
and one for the Sonora study area (Path 35/Row 39). The two
scenes were mosaicked into one image for each date (Fig. 2).
There was little cloud cover: b1% on 11 June, b5% on 29 July,
and b1% on 30 August. The images were then registered using
the Environment for Visualizing Images (ENVI) version 4.1
(Research Systems, Inc., Boulder CO, USA). USGS Digital
Orthophoto Quads were used to obtain 10 ground control points
for the Arizona study area. The residual mean square error was
b20 m for each image (Fig. 2).

3.2. Atmospheric correction

In order to get top-of-the-canopy reflectances, the digital
numbers for Landsat bands 1–5 and 7 were converted first into
radiances:

L ¼ ½ðLmax � LminÞd Qcal=Qcal max� þ Lmin ð3Þ
where, L is the spectral radiance at the sensor's aperture (W m−2

sr−1 μm−1),Qcal is the quantized calibrated pixel value in digital
, and (C) August 30, 2004 during the Soil Moisture Experiment 2004 (SMEX04).
ith TM band 5 (red), TM Band 4 (green) and TM Band 3 (blue). North is towards
area (AZ) and the 90-km-by-50-km Sonora, Mexico study area (SO).
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number (DN), Qcal min is the minimum quantized calibrated
pixel value (DN=0), Qcal max is the maximum quantized
calibrated pixel value (DN=255), Lmin is the spectral radiance
(W m−2 sr−1 μm−1) scaled to Qcal min, and Lmax is the spectral
radiance (W m−2 sr−1 μm−1) scaled to Qcal max (Chander &
Markham, 2003). The values of Lmin, Lmax and Qcal max are
taken fromLandsat-5 TM post-calibration of the dynamic ranges
for US Processes National Landsat Archive Production System
(Chander & Markham, 2003).

The atmospheric correction for all channels was conducted
using the MODerate resolution atmospheric TRANsmission
(MODTRAN) model (Adler-Golden et al., 1999). As input data
for MODTRAN, sun photometer data were obtained through
the NASA Goddard Space Flight Center AERONET network
(http://aeronet.gsfc.nasa.gov), ozone content data were obtained
from Environment Canada (http://woudc.ec.gc.ca/cgi-bin/select
Map/), radiosonde data were obtained from National Oceanic
and Atmospheric Administration (http://raob.fsl.noaa.gov/),
and meteorological data were obtained from nearby weather
stations.

If the area surrounding a target is assumed to be similar to the
target and the target is a Lambertian surface, the reflectance at
the target is expressed:

q ¼ pðL� LpÞ=½TðEdir þ Ediff Þ þ p SðL� LpÞ� ð4Þ

where: Lp is the atmospheric path radiance (W m−2 sr−1 μm−1),
Edir is the direct irradiance at the surface (W m−2), Ediff is the
diffuse irradiance at the surface (W m−2), S is the reflectance of
the atmosphere, and T is the total diffuse transmittance from the
ground to the top of the atmosphere in the view direction of the
satellite (Adler-Golden et al., 1999; Vermote et al., 1997; Ver-
mote &Vermeulen, 1999).MODTRANwas used to estimate the
parameters in Eq. (4), so that ρ for Landsat bands 1–5 and 7 were
calculated.

3.3. Vegetation indices

Canopy EWT is usually remotely sensed using various ve-
getation indices. The most common index using in remote
sensing is the normalized difference vegetation index (NDVI;
Rouse et al., 1974):

NDVI ¼ ðq0:85 � q0:66Þ=ðq0:85 þ q0:66Þ ð5Þ
where ρ0.85 is the reflectance of a near-infrared band and ρ0.66 is
the reflectance of a red band at about 0.85 μm and 0.66 μm
wavelength, respectively. This index is correlated to LAI (Baret
& Guyot, 1991; Franklin et al., 1997; Peterson et al., 1987;
Tucker, 1979). This index also differentiates between green
vegetation and soil background, and is also useful for landcover
classification. Because a major variable affecting the canopy
EWT is LAI (Hunt, 1991; Roberts et al., 1998, 2004), NDVI
should be correlated to canopy EWT. Hardisky et al. (1983)
proposed the normalized difference infrared index (NDII) as
correlated to plant moisture content:

NDII ¼ ðq0:85 � q1:65Þ=ðq0:85 þ q1:65Þ ð6Þ
where ρ1.65 is the reflectance of a shortwave-infrared band at
about 1.65 μm wavelength. In another study, Hunt and Rock
(1989) showed that the moisture stress index (MSI):

MSI ¼ q1:65=q0:85 ð7Þ
is a function of leaf EWT for a wide range of leaf morphologies.
However, MSI is inversely related to leaf EWT and thus may
cause more confusion than normalized difference indices. NDII
is equal to (1−MSI) / (1+MSI), so there is a direct, non-linear
relationship between these two indices. NDII linearly increases
with canopy EWT at low canopy EWT (Ceccato et al., 2002;
Davidson et al., 2006; Jackson et al., 2004), so NDII is prefer-
able to MSI as a vegetation index. MODIS has another band at
about 1.24 μm wavelength which also may be used to estimate
canopy EWT (Gao, 1996):

NDWI ¼ ðq0:85 � q1:24Þ=ðq0:85 þ q1:24Þ ð8Þ
where NDWI is the normalized difference water index and ρ1.24
is the reflectance at about 1.24 μm wavelength. Gao (1996) has
important, specific reasons for using ρ1.24 instead of ρ1.65, so
NDWI is not synonymous with NDII. Because Landsat 5 TM
does not have a band in the 1.24 μm wavelength region, NDWI
was not used in this study.

3.4. Vegetation classification

Digital elevation data (90 m) were acquired for the Sonora
study areas from the North American Monsoon Experiment data
center at the Earth Observing Laboratory, National Center for
Atmospheric Research (Boulder, CO, USA, http://data.eol.ucar.
edu/codiac/ds_proj?NAME). Digital elevation data (30 m) were
obtained for the Arizona study area from GeoCommunity at
Qlinks Media Group (Niceville, FL, USA, http://data.geocomm.
com). Using elevation, slope and maximum curvature were
calculated within the Environment for Visualizing Images
(ENVI version 4.0, Research Systems, Inc., Boulder, Colorado,
USA) to delineate riparian areas from upland areas. Rather than
use band reflectances for classification, NDVI and NDII were
used because these indices reduced the effects of the substantial
variation in soil background reflectances. Furthermore, the
overall mean of NDVI and NDII and the maximum difference of
NDVI and NDII over the three dates were calculated in ENVI. A
15-band dataset was created from the three topographic vari-
ables, the three dates of NDVI, the three dates of NDII, three-
date mean NDVI and NDII, three-date maximum NDVI and
NDII, and the maximum difference of NDVI and NDII for
classification of vegetation types.

A decision tree (Belward & de Hoyos, 1987; Bolstad &
Lillesand, 1992; Friedl & Brodley, 1997; Lloyd, 1990; Running
et al., 1995) was used to classify the study areas and the sur-
rounding region using ENVI. Most decision-tree classifications
use statistical procedures on training data to develop rules for
each node (Friedl & Brodley, 1997). Here the rules were de-
veloped manually to have the fewest number of nodes by com-
paring the classification to the ground data and general vegetation
maps for the Arizona and Sonora study areas (Jackson, 2004).

http://aeronet.gsfc.nasa.gov
http://woudc.ec.gc.ca/cgi-bin/selectMap/
http://woudc.ec.gc.ca/cgi-bin/selectMap/
http://raob.fsl.noaa.gov/
http://data.eol.ucar.edu/codiac/ds_proj?NAME
http://data.eol.ucar.edu/codiac/ds_proj?NAME
http://data.geocomm.com
http://data.geocomm.com


Table 3
Site leaf area index (LAI), leaf equivalent water thickness (EWT), and canopy
EWT

Site name (class) LAI
(LAI-2000)

LAI
(fisheye)

Leaf EWT
(mm)

Canopy EWT
(kg m−2)

AZ Maize (agriculture) 5.33 7.82 0.11 0.72
AZ Chili (agriculture) 1.63 2.03 0.21 0.38
AZ Kendell (grass) 0.25 0.09 0.16 0.03
AZ Stronghold (grass) 0.24 0.21 0.14 0.03
AZ Lewis Springs
(sacaton)

– 1.15 0.19 a 0.22

AZ San Pedro (sacaton) 1.10 1.21 0.19 0.22
AZ Lucky Hills (shrub) – 0.27 0.27 0.07
AZ RG13 (shrub) 0.32 0.36 0.19 b 0.07
AZ Kendell
(whitethorn shrub)

0.29 0.27 0.19 0.05

AZ RG57
(beargrass shrub)

0.20 – 0.63 0.13

AZ San Pedro
(rabbitbrush shrub)

0.40 – 0.69 0.27

AZ Lewis Springs
(rip. mesquite)

1.25 1.38 0.16 0.21

AZ San Pedro
(riparian wood)

– 2.41 0.20 c 0.48

AZ Stronghold South
(oak)

– 0.98 0.13 0.13

AZ Stronghold North
(oak)

1.16 0.98 0.14 0.14

SO 134 (oak) – 0.69 0.11 0.08
SO 135 (mesquiteshrub) – 1.98 0.14 0.28
SO 136 (shrub) – 0.60 0.16 0.10
SO 143 (mesquiteshrub) – 0.63 0.11 0.07
SO TID1 (oak) – 0.59 0.18 d 0.11
SO TID2 (oak) – 1.74 0.18 d 0.31
SO TID4 (oak) – 0.75 0.19 0.14
SO TID5 (oak) – 1.13 0.16 0.18
SO TID7 (subtropical) – 0.77 0.30 e 0.23
SO TID13 (subtropical) – 1.17 0.30 e 0.35

LAI (m2 m−2) was estimated using the LICOR Plant Canopy Analyzer (LAI-
2000) or canopy hemispherical (fisheye) photographs corrected to expected
value for the LAI-2000, Fig. 1). When both the LAI-2000 and fisheye photo-
graphs were used, final plot LAI was the mean of the two methods.

355M.T. Yilmaz et al. / Remote Sensing of Environment 112 (2008) 350–362
Ground data used to develop the classification were the vege-
tation plots in the Arizona and Sonora study areas (Table 1). The
following were initially determined to be the major landcover
classes and were selected for the initial classification: (1) water,
(2) unvegetated, (3) desert shrublands, (4) grassland, (5) riparian
mesquite, (6) riparian woodland, (7) evergreen oak woodland,
(8) evergreen needle-leaf woodland, (9) subtropical shrubland,
and (10) agriculture.

Desert shrublands are most common vegetation type at the
lower, non-riparian lands in Arizona and Sonora, with creosote
bush, deciduous leguminous shrubs and desert succulents
commonly occurring (Table 2). There are three different types
of grassland depending on elevation: riparian sacaton, lower
elevation black grama, and higher elevation sideoats grama
(Table 2). The grasslands and desert shrublands have a very
gradual transition and are common of the Sonoran and Chihua-
huan deserts (MacMahon, 2000). Riparian communities are
mesquite and deciduous woodlands (Table 2); mesquite occurs
throughout the study areas, both upland and riparian, but in the
riparian zone it forms small trees whereas in the uplands it is
similar in stature and density to other desert leguminous shrubs.
At higher elevations are evergreen oak and pine woodlands,
with a significant understory of sideoats grama. Subtropical
shrubland is a drought-deciduous vegetation community in
Sonora, which leafs out during the summer monsoon, and
occurs at elevations between the desert shrublands and oak
woodlands. One of the differences between the desert shrubland
and subtropical shrubland was the substitution of the saguaro
cactus with the organ-pipe cactus (Table 2). Agriculture is a
mixed landcover class, which included different irrigated crops
at different stages of development.

The soil moisture plots sampled during SMEX04 (Cosh
et al., 2008-this issue; Vivoni et al., 2008-this issue) were used
to assess the accuracy of the classification. Accuracy was
assessed using producer, user and overall accuracies (Congalton
& Green, 1999). Because the soil moisture plots were not
a Value from AZ San Pedro sacaton was used.
b Value from AZ Kendell white thorn was used.
c No available data, 0.20 mm from Populus deltoides (E. R. Hunt, personal

communication).
d Average value was used for SO TID-4 and SO TID-5.
e No available data, 0.30 mm from Sims and Gammon (2003).

Table 2
Common names and species names representative of some vegetation classes

Common name Species name Vegetation class

Creosote bush Larrea tridentata Shrub
Cat's claw Acacia greggii Shrub
White thorn Acacia constricta Shrub
Ironwood Olneya tesota Shrub
Beargrass (succulent) Nolina microcarpa Shrub
Saguaro (succulent) Cereus giganteus Shrub
Yucca (succulent) Yucca schottii Shrub
Ephedra (succulent) Ephedra trifurca Shrub
Rabbitbrush Chrysothamnus

nauseosus
Shrub

Sacaton Sporobolus wrightii Grass
Black grama Bouteloua eriopoda Grass
Sideoats grama Bouteloua curtipendula Grass
Mesquite Prosopis velutina Riparian Mesquite or Shrub
Organ-pipe cactus Stenocereus thurberi Subtropical
Willow Salix spp. Riparian Wood
Cottonwood Populus tremontii Riparian Wood
Pine Pinus spp. Evergreen
Oak Quercus spp. Evergreen
selected to have a range of vegetation types, there were an
insufficient number of points for most vegetation classes; thus,
the vegetation plots were included the accuracy assessment.

4. Results and discussion

4.1. NDII and canopy EWT

LAI was generally low except for irrigated agricultural areas
and riparian woodlands (Table 3), which was expected due to
the desert climate. Also, LAI (Table 3) was correlated with the
cover of green vegetation (Table 1) with r=0.59, which was
significant at Pb0.005. For non-succulent vegetation types,
leaf EWT ranged from 0.11 mm to 0.27 mm, in the range found
for many leaves (Hunt & Rock, 1989; Sims & Gamon 2003).



Fig. 3. Canopy equivalent water thickness (EWT) versus July–August average
Normalized Difference Infrared Index (NDII). The equation of the simple linear
regression is y=0.938x+0.185, with an R2 of 0.601 and a standard error of the y
estimate of 0.133 mm.
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The variation in LAI and leaf EWT created a large range in
canopy EWT from 0.01 to 0.75 kg m−2 (Table 3).

The dates for the July and August Landsat TM images
occurred before and after, respectively, the dates for the
SMEX04 fieldwork. Therefore, the average NDII from the
July and August imagery were compared to the vegetation data
(Table 3). NDII was linearly related to canopy EWT (Fig. 3).
This regression equation was used to estimate canopy EWT for
the three dates of Landsat TM imagery (Fig. 4). MSI and NDVI
did not have as high R2 or as low standard error as NDII for
estimating canopy EWT (data not shown).

Two recent studies have related canopy EWT to vegetation
indices using ρ1.65: Ceccato et al. (2002), and Davidson et al.
Fig. 4. Canopy EWT estimated by NDII from Landsat 5 TM images acquired on (A)
(Fig. 3) was used to estimate canopy EWT. Boxes show the SMEX04 study areas i
(2006). Pietro Ceccato (personal communication) and Andrew
Davidson (personal communication) provided more informa-
tion on their findings, so that we were able to compare our
results with theirs. The regression equations between NDII and
canopy EWT from these two studies were not significantly
different from that in Fig. 3 using a dummy variable regression
(P=0.536 and P=0.076 for Ceccato et al. and Davidson et al.,
respectively). Thus, Ceccato et al. (2002) and Davidson et al.
(2006) together with this study suggest that the canopy EWT-
NDII relationship is robust. Hunt (1991) estimated very large
canopy EWT during the Oregon Transect Terrestrial Ecosystem
Research project, and the relationship between canopy EWT
and NDII was different from Fig. 3, Ceccato et al. (2002), and
Davidson et al. (2006). From Hunt (1991), it is likely that the
canopy EWT-NDII relationship becomes saturated at high ca-
nopy EWT.

The standard error of the y estimate for the regression equa-
tion in Fig. 3 is 0.133 mm, which is somewhat less than the
average of leaf EWT (Table 3). Therefore, the relationship
between Landsat TM NDII and canopy EWT is not useful for
detecting the incipient stages of drought stress because most of
the leaf water would need to be lost before detection of stress,
which supports Hunt and Rock's (1989) conclusion using MSI
(Eq. (7)). However, ±0.133 mm is equivalent to an accuracy of
0.5 to 1 m2 m−2 LAI for non-succulent species, so the accuracy
of NDII may be sufficient for assimilation into algorithms to
retrieve soil moisture from microwave remote sensing data.

4.2. Landcover classification

SMEX04 vegetation data (Table 1) were used in a preli-
minary analysis to separate different landcover classes based on
June 11, (B) July 29, and (C) August 30, 2004. The regression for the plot data
n Arizona and Sonora.



Fig. 5. Relationships of NDVI and elevation for landcover classification based
on vegetation sites used for a decision tree classification.
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elevation and average NDVI (Fig. 5). Grasslands and shrub-
lands had lower average NDVI whereas other vegetation types
had higher average NDVI. NDVI and elevation data from the
imagery using known areas of pine woodlands indicated that
this landcover class could not be separated from evergreen oak
woodlands, so these two classes were combined. Elevation was
particularly useful for separating the subtropical shrublands
Table 4
Rules for decision tree land cover classification

Rule Conditional statement a

1 (NDVI-ave N0 .27 ) & [ (NDVI -ave N0 .32 ) |
((NDVI_211−NDVI_163)N0.195)] b

2 NDVI-aveN0.13
3 NDVI-aveN0.00
4 (NDVI-aveb0.22 ) & (NDVI-max-diffb0.08) c

5 [(slopeb5) & (DEMb1550|max-curvb30.3)] &
[(NDII-max-diffb0.26) & (NDVI-aveb0.53)] &
[(NDVI_211–NDVI_163)b0.20 & (NDVI-max
−NDVI_163)b0.275] d

6 [(border=1) & (DEMb1550) & (max-curvb30.3)] &
[((NDVI_211−NDVI_163)N0.23)] & [(NDVI-
aveN0.40) & (NDVI_163b0.31)] e

7 [(DEM b1550) & (slope b1.5)] & {(NDVI-
aveN0.40) & [(NDVI-max-diff N0.45)|(NDVI-
max N0 .80 ) | (NDI I -max N0 .40 ) | (NDI I -max -
diffN0.50)]} f

8 { [ (DEM N2000 ) & (NDVI_163 b0 . 7 ) &
(NDII_163b0.23)]|[(DEMN1700) & (DEMb2000)
& (NDII_163 b0.17) & (NDVI-ave N0.40)]|
[(DEMN1300) & (DEMb1700) & (max-curvN30)
& (NDII_163N−0.10) & (NDVI-aveN0.40)]} g

9 (NDII_163b0.04 ) & (NDVI_163b0.47)
a Symbols and variable names and (&); or,(|) ; digital elevation model (DEM, m);

index (NDII); slope calculated from DEM (slope, %); maximum curvature calculated f
vegetation types(border); average NDVI for the three TM images (NDVI-ave); maxim
among the three TM images (NDVI-max-diff); average NDII for the three TM image
difference of NDII among the three TM images (NDII-max-diff); yearday 163 (June
b Rule 1: Average NDVI separates low and high vegetation cover.
c Rule 4: Seasonal increase in NDVI separates grasses from shrubs.
d Rule 5: Stream channels and little change over time separates riparian vegatatio
e Rule 6: Subtropical shrubs are highly seasonal and occur only in the Sonoran st
f Rule 7: Agriculture is highly seasonal and occur on relatively flat land.
g Rule 8: Evergreen oaks and conifers occur at different elevations on a south to
from the higher elevation evergreen oak and pine woodlands
(Fig. 5). Agriculture had the highest NDVI (Fig. 5), but the
NDVI was highly variable, which was likely due to the three
Landsat 5 TM images being acquired at different stages of crop
growth.

The first major decision in the regression tree was differ-
entiation between areas of low and high vegetation cover, based
on average NDVI (Table 4, Rule 1). Areas with very low
average NDVI are either water bodies or playas with no vege-
tation. Grasslands and shrublands also have low NDVI, and
were distinguished based on the green-up of grasslands with the
summer monsoon rains (Table 4, Rule 4). Riparian vegetation
was first separated using stream channels defined by topogra-
phy and was not seasonal (Table 4, Rule 5). The amount of NDII
and NDVI separate riparian mesquite from riparian woodlands
classes (Table 4, Rule 9). Subtropical shrublands are drought-
deciduous and occur only in Mexico, so first a border of latitude
was created in northern Sonora, so that areas south of this
latitude with a large phenological change in NDVI would be
classified as subtropical shrubs (Table 4, Rule 6). Except for the
topography, subtropical shrubs show similar NDVI change with
crops and NDVI amount with evergreen vegetation. So the use
of NDVI change and amount was critical to mask out evergreen
and crops respectively to handle the similarities between each
False True

Rule 2 Rule 5

Rule 3 Rule 4
Water Unvegetated
Grass Shrub
Rule 6 Rule 9

Rule 7 Subtropical

Rule 8 Agriculture

Sparse Woodland Evergreen

Riparian Wood Mesquite

normalized difference vegetation index (NDVI); normalized difference infrared
romDEM (max-curv, dimensionless); division between semiarid and subtropical
um NDVI for the three TM images (NDVI-max); maximum difference of NDVI
s (NDII-ave); maximum NDII for the three TM images (NDII-max); maximum
11) value, yearday 211 (July 29) value; yearday 243 (August 30) value.

n from other vegetation types.
udy area.

north gradient due to differences in precipitation.



Fig. 6. Landcover classification from three dates of Landsat 5 Thematic Mapper
imagery with the SMEX04 study areas shown in boxes.
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class, which resulted in a variety of rules (Table 4, Rule 7).
However, combining the various crop types into one class
resulted in nested statements to separate woods from agricul-
tural fields (Table 4, Rule 7). Growing over a wide range of
elevation, evergreen conifer and oak woodlands have three
Table 5
Accuracy assessment for landcover classification

Class Ground data

Grass Shrub R. Mesquite a R. Wood b

Grass 4 14 1 –
Shrub 4 89 – –
R. Mesquite – 1 – –
R. Wood – – 1 –
Evergreen – – – –
Agriculture – – – –
Subtropical – 1 – –
Sparse Wood d 1 8 3 2
Total 9 113 5 2
Producer Accuracy (%) 44 79 0 0
Overall Accuracy (%)

The ground data include the vegetation sites (Table 1) that were used for training an
a Riparian mesquite.
b Riparian woodland (cottonwood-willow).
c Combined evergreen oak and pine woodlands.
d New intermediate category, sparse woodland.
different rules along a south to north precipitation gradient
(Table 4, Rule 8).

After the rules for the various landcover classes that were
defined during the SMEX04 experiment were applied, there
was a large area that remained unclassified. These areas had
higher NDVI than shrublands, and lower NDVI than evergreen
woodlands, and did not have the strong phenology signal of
subtropical shrublands. Therefore, a new class was created,
sparse woodlands, which were observed in the field to be
dominated by upland mesquite, Acacia shrubs, and ironwood.
In the Arizona study area, when these species occurred at low
density and at low elevations, these species were classified as
desert shrubland (Table 1, AZ Kendell — whitethorn). In the
Sonora study area, these species occurred at higher density
(Table 1, SO 135, SO 136 and SO 143), leading to higher
NDVI.

The final landcover based on the three dates of Landsat 5 TM
data is shown in Fig. 6. The various classes show the general
trends of the vegetation with elevation as observed in the
Arizona study area. The dominant landcover class in the Ari-
zona study area was desert shrub, and the dominant landcover
class in the Sonora study area was subtropical shrub. However,
37% of the Sonora study area was classified as sparse wood-
land, whereas this landcover class was only 5% of the Arizona
study area (Fig. 6).

The overall accuracy of the decision-tree classification was
only 70% (Table 5). The overall accuracy is low, in part
because the sparse woodlands were not defined a priori, and
thus, were treated as classification errors. By including sparse
woodlands as a separate land-cover class before data collection,
the overall accuracy increases to 75%. For the two landcover
classes that had a large number of samples, desert shrublands in
the Arizona study area and subtropical shrublands in the Sonora
study area, the user and producer accuracies were about 80% to
90% (Table 5). Grasslands were poorly differentiated with a
producer accuracy of 44% and a user accuracy of 18%. The
poor classification of grasslands was caused by confusion with
Evergreen c Agriculture Subtropical Total User Accuracy (%)

3 – – 22 18
2 – – 95 94
– – – 1 0
– – – 1 0
2 – – 2 100
– 1 – 1 100
2 – 20 23 87
2 1 3 20 0
11 2 23 165
18 50 87

70

d the soil moisture sites from SMEX04.



Fig. 7. Landcover-average canopy EWT versus landcover-average NDII. The
equation of the simple linear regression is y=1.23x+0.0722, with an R2 of
0.980 and a standard error of the y estimate of 0.081.
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shrublands in the Arizona study area (Table 5). Evergreen
woodlands also were poorly classified, with a producer accu-
racy of 18%. All landcover classes had some confusion with the
residual class, sparse woodland (Table 5), particularly the desert
shrubland in the Sonora study area, indicating the transitional
nature of the sparse woodland class.

It was expected that there would be stronger differences
among the vegetation types based on phenology. However, the
summer monsoon started late in 2004, which may have reduced
the expected phenological differences. Elevation data had to be
Fig. 8. Canopy EWT estimated by (A) Landcover and (B) July–August average NDII
the plot data (Fig. 3) was used for panel B. Boxes show the SMEX04 study areas in
added to the classification, as a proxy for precipitation, because
of reduced rainfall in the summer of 2004.

4.3. Comparison of canopy EWT from NDII and landcover

When canopy EWT and July–August average NDII were
averaged by landcover class, there was a strong linear rela-
tionship between canopy EWT and NDII (Fig. 7). The July–
August average was selected because this time period represents
peak LAI as the result of the summer monsoon and the imagery
brackets the time the ground data were collected. Since there
was no sparse woodland class sampled during SMEX04,
canopy EWT and NDII were estimated with the average values
of shrubland, grassland, riparian woodland, evergreen wood-
land, and subtropical shrubland. Although the R2 of Fig. 7 was
much higher than Fig. 3, the regression equations were not
significantly different, because the same data were used for both
regressions. The important point of Fig. 7 is that predictions of
canopy EWT based on landcover-class averages appear to be
more accurate than predictions based on NDII, but this is simply
due to averaging plot variability within the data points used for
each landcover class.

Canopy EWT predicted from landcover class were different
to the canopy EWT from NDII, particularly in the desert
shrublands and evergreen woodlands of the Arizona study area
and in the subtropical shrublands in the Sonora study area
(Fig. 8). The differences in canopy EWT between the two
methods are shown in Fig. 9. Most of the two TM images have
. Class averages were used to estimate EWT for panel A and the regression from
Arizona and Sonora.



Fig. 10. Percentiles of NDII for each landcover class. The center line is the
median, the ends of the boxes are the 25th and 75th percentiles, and the error
bars are the 10th and 90th percentiles.
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close agreement between canopy EWT predicted from land-
cover class and from NDII. The errors for the evergreen wood-
lands and subtropical shrublands are large compared to the
standard error in the regression of Fig. 4.

These errors may be from the lack of representative sampling
done during SMEX04 for subtropical shrublands; however,
there were many plots of evergreen oaks woodlands in both the
Arizona and Sonora study areas (Table 1). The value for leaf
EWT of subtropical shrublands was assumed to be 0.3 mm
(Table 2), which is within the range found for drought-deci-
duous shrubs in the Southern California Chaparral (Sims &
Gamon, 2003). Other large errors were found for bare soil,
playas and active mines, for which the landcover classification
assumed a value of 0 mm for canopy EWT. We hypothesize that
the high values of canopy EWT for non-vegetated surfaces may
simply result from these surfaces being wet or from mineral
absorptions (Ben-Dor, 2002).

There is a large range of overlap in NDII among the various
landcover classes (Fig. 10). Variation in NDVI shows a similar
pattern of large variation (data not shown). Some of the variation
in NDII can be attributed to errors in the landcover classification
(Table 5); however, much of the range of variation is probably
attributed to differences in LAI, because the field data measured
during SMEX04 had similar changes in LAI (Table 2).

For some landcover classes such as agriculture, seasonal
growth results in large increases in LAI and canopy EWT (An-
derson et al., 2004; Doraiswamy et al., 2004; Jackson et al.,
2004), so landcover average EWTwould not be appropriate. For
other remote sensing applications such as estimating fuel dry-
Fig. 9. The absolute difference in canopy EWT estimated from the July–August
average NDII and landcover. Boxes show the SMEX04 study areas in Arizona
and Sonora.
ness for wildfire potential, seasonal variation of canopy EWT is
necessary. For both the Arizona and Sonora study areas, NDII
tracked changes in canopy EWT over the summer, monsoonal
growing season (Fig. 4), which would not be possible with the
landcover-based canopy EWT. After the initial growth phase of
perennial vegetation, patterns of LAI are related to precipitation
and soil water holding capacity (Hoff & Rambal, 2003; Nemani
& Running, 1989; Woodward, 1987); thus, landcover average
EWT is actually site dependent. Broad variation in NDII in each
landcover class (Fig. 10) suggests that even at the peak of the
growing season, a biophysical relationship between NDII and
canopy EWT would be preferable to landcover averages for
mapping vegetation water content for soil moisture retrievals
from microwave data.

5. Conclusions

Using vegetation data collected during SMEX04, two alter-
natives developed for canopy EWT, one based upon NDII and
the other using landcover class. Similar to leaf studies, changes
in shortwave-infrared reflectances at about 1.65 μm wavelength
compared to near-infrared reflectances are probably directly
related to canopy EWT, as indicated by extensive simulations
using canopy radiative transfer models (Baret & Fourty, 1997;
Ceccato et al., 2001, 2002). The linear relationship between
NDII and canopy EWT found here was not significantly dif-
ferent from other studies over the same range of canopy EWT
(Ceccato et al., 2002; Davidson et al., 2006); thus, NDII from
various sensors, such as MODIS, may be able to provide a
global estimate of canopy EWT. Whereas landcover class was a
relatively poor predictor of canopy EWT, landcover class will
be very important for estimating total vegetation water content,
because considerable liquid water is contained in the non-foliar
components of vegetation. Although we used NDII for this
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study, we expect similar conclusions for other vegetation
indices based on the spectral absorption features of liquid water.
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